Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)
نویسندگان
چکیده
MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats.
منابع مشابه
Transcriptome Sequencing Reveals Differences between Primary and Secondary Hair Follicle-derived Dermal Papilla Cells of the Cashmere Goat (Capra hircus)
The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two ...
متن کاملExploring Differentially Expressed Genes by RNA-Seq in Cashmere Goat (Capra hircus) Skin during Hair Follicle Development and Cycling
Cashmere goat (Capra hircus) hair follicle development and cycling can be divided into three stages: anagen, catagen and telogen. To elucidate the genes involved in hair follicle development and cycling in cashmere goats, transcriptome profiling of skin was carried out by analysing samples from three hair follicle developmental stages using RNA-Seq. The RNA-Seq analysis generated 8487344, 81425...
متن کاملGenome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity
Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a ge...
متن کاملIdentification and Characterization of MicroRNAs in the Goat (Capra hircus) Rumen during Embryonic Development
The rumen is an important digestive organ in ruminants. Numerous regulatory factors including microRNAs (miRNAs) are involved in embryonic organ development. In the present study, miRNAs expressed in the rumens of goats (Capra hircus) and their potential roles in the pathways involved in rumen development were identified using high-throughput sequencing. Histological morphology revealed a disti...
متن کاملCharacterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology.
MicroRNAs (miRNAs) are an important class of small noncoding RNAs that are highly conserved in plants and animals. Many miRNAs are known to mediate a myriad of cell processes, including proliferation and differentiation, via the regulation of some transcription and signaling factors, which are closely related to muscle development and disease. In this study, small RNA cDNA libraries of Boer goa...
متن کامل